skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Suarez, S. Israel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Arylthioamides have been frequently employed to assess the chemical biology and pharmacology of hydrogen sulfide (H2S). From this class of donors, however, extremely low H2S releasing efficiencies have been reported and proper mechanistic studies have been omitted. Consequently, millimolar concentrations of arylthioamides are required to liberate just trace amounts of H2S, and via an unidentified mechanistic pathway, which obfuscates the interpretation of any biological activity that stems from their use. Herein, we report that H2S release from this valuable class of donors can be markedly enhanced through intramolecular nucleophilic assistance. Specifically, we demonstrate that both disulfide‐ and diselenide‐linked thioamides are responsive to biologically relevant concentrations of glutathione and release two molar equivalents of H2S via an intramolecular cyclization that significantly augments their rate and efficiency of sulfide delivery in both buffer and live human cells. 
    more » « less
  2. A robust lipophilic dye, based on the structures of the benzothiadiazole heterocycle, was shown to be a potent fluorescent stain for the selective imaging of lipid droplets (LDs) within both live and fixed human cells. Its small molecular framework, large Stokes shift, and vastly improved photostability over that of the current status quo , Nile Red, highlight its tremendous potential as a versatile chemical tool for facilitating LD imaging and research. 
    more » « less